Automatic BDI Plan Recognition from Process Execution Logs and Effect Logs
نویسندگان
چکیده
Agent applications are often viewed as unduly expensive to develop and maintain in commercial contexts. Organizations often settle for less sophisticated and more traditional software in place of agent technology because of (often misplaced) fears about the development and maintenance costs of agent technology, and the often mistaken perception that traditional software offers better returns on investment. This paper aims to redress this by developing a plan recognition framework for agent program learning, where behavior logs of legacy applications (or even manually executed processes) are mined to extract a 'draft' version of agent code that could eventually replace these applications or processes. We develop, implement and evaluate techniques for inferring agent plans from behavior logs, with both positive and negative examples. After obtaining the plans, we resort to an effect log to identify the context (i.e. precondition) for each plan. The experimental results show that our framework generates a first draft of an agent program (i.e. the code) which can then be modified as required by a developer.
منابع مشابه
Concept drift detection in event logs using statistical information of variants
In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملIdentifying the software and their families using the exploration techniques of sequential patterns in dynamic analysis
Nowadays, crypto-ransomware is considered as one of the most threats in cybersecurity. Crypto ransomware removes data access by encrypting valuable data and requests a ransom payment to allow data decryption. As ransomware is still new in the field of cybersecurity, there are few pieces of research focusing on detecting ransomware samples. Most published works considered System File and process...
متن کاملDiscovering More Precise Process Models from Event Logs by Filtering Out Chaotic Activities
Process Discovery is concerned with the automatic generation of a process model that describes a business process from execution data of that business process. Real life event logs can contain chaotic activities. These activities are independent of the state of the process and can, therefore, happen at rather arbitrary points in time. We show that the presence of such chaotic activities in an e...
متن کاملA programming method to estimate proximate parameters of coal beds from well-logging data using a sequential solving of linear equation systems
This paper presents an innovative solution for estimating the proximate parameters of coal beds from the well-logs. To implement the solution, the C# programming language was used. The data from four exploratory boreholes was used in a case study to express the method and determine its accuracy. Then two boreholes were selected as the reference, namely the boreholes with available well-logging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013